skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Paudel, Pushpa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Organic electrochemical transistors (OECTs) are highly versatile in terms of their form factor, fabrication approach that can be applied, and freedom in the choice of substrate material. Their ability to transduce ionic into electric signals and the use of bio-compatible organic materials makes them ideally suited for a wide range of applications, in particular in areas where electronic circuits are interfaced with biologic matter. OECT technology has attracted widespread interest in recent years, which has been accompanied by a steady increase in its performance. However, this progress was mainly driven by device optimization and less by targeting the design of new device geometries and OECT materials. To narrow this gap, this review provides an overview on the different device models that are used to explain the underlying physics governing the steady and transient behavior of OECTs. We show how the models can be used to identify synthetic targets to produce higher performing OECT materials and summarize recently reported materials classes. Overall, a road-map of future research in new device models and material design is presented summarizing the most pressing open questions in the understanding of OECTs. 
    more » « less
  2. null (Ed.)
  3. The first study of the flexo-ionic effect, i.e., mechanical deformation-induced electric signal, of the recently discovered ionic liquid crystal elastomers (iLCEs) is reported. The measured flexo-ionic coefficients were found to strongly depend on the director alignment of the iLCE films and can be over 200 µC/m. This value is orders of magnitude higher than the flexo-electric coefficient found in insulating liquid crystals and is comparable to the well-developed ionic polymers (iEAPs). The shortest response times, i.e., the largest bandwidth of the flexo-ionic responses, is achieved in planar alignment, when the director is uniformly parallel to the substrates. These results render high potential for iLCE-based devices for applications in sensors and wearable micropower generators. 
    more » « less
  4. Organic Electrochemical Transistors are versatile sensors that became essential for the field of organic bioelectronics. However, despite their importance, an incomplete understanding of their working mechanism is currently precluding a targeted design of Organic Electrochemical Transistors and it is still challenging to formulate precise design rules guiding materials development in this field. Here, it is argued that current capacitive device models neglect lateral ion currents in the transistor channel and therefore fail to describe the equilibrium state of Organic Electrochemical Transistors. An improved model is presented, which shows that lateral ion currents lead to an accumulation of ions at the drain contact, which significantly alters the transistor behavior. Overall, these results show that a better understanding of the interface between the organic semiconductor and the drain electrode is needed to reach a full understanding of Organic Electrochemical Transistors. 
    more » « less